首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7683篇
  免费   686篇
  国内免费   865篇
  2024年   14篇
  2023年   151篇
  2022年   196篇
  2021年   449篇
  2020年   343篇
  2019年   477篇
  2018年   394篇
  2017年   275篇
  2016年   395篇
  2015年   531篇
  2014年   603篇
  2013年   639篇
  2012年   695篇
  2011年   605篇
  2010年   368篇
  2009年   338篇
  2008年   370篇
  2007年   323篇
  2006年   293篇
  2005年   214篇
  2004年   247篇
  2003年   213篇
  2002年   165篇
  2001年   155篇
  2000年   118篇
  1999年   95篇
  1998年   75篇
  1997年   54篇
  1996年   80篇
  1995年   64篇
  1994年   50篇
  1993年   27篇
  1992年   42篇
  1991年   32篇
  1990年   31篇
  1989年   21篇
  1988年   24篇
  1987年   16篇
  1986年   12篇
  1985年   18篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
排序方式: 共有9234条查询结果,搜索用时 502 毫秒
991.
Alcohol dehydrogenases (ADHs) from thermophilic microorganisms are interesting enzymes that have their potential applications in biotechnology and potentially provide insight into the mechanisms of action of thermo-tolerant proteins. The molecular mechanisms of ADHs under thermal stress in vivo have yet to be explored. Herein, we employed a proteomic strategy to survey the possible interactions of secondary-ADH (2-ADH) with other proteins in Thermoanaerobacter tengcongensis (T. tengcongensis) cultured at 75°C and found that 2-ADH, pyruvate-ferredoxin oxidoreductase (PFOR) and several glycolytic enzymes coexisted in a protein complex. Using anion exchange chromatography, the elution profile indicated that the native 2-ADH was present in two forms, PFOR-bound and PFOR-free. Immuno-precipitation and pull down analysis further validated the interactions between 2-ADH and PFOR. The kinetic behaviours of 2-ADH either in the recombinant or native form were evaluated with different substrates. The enzyme activity of 2-ADH was inhibited in a non-competitive mode by PFOR, implying the interaction of 2-ADH and PFOR negatively regulated alcohol formation. In T. tengcongensis, PFOR is an enzyme complex located at the upstream of 2-ADH in the alcohol generation pathway. These findings, therefore, offered a plausible mechanism for how alcohol metabolism is regulated by hetero-interactions between 2-ADH and PFOR, especially in anaerobic thermophiles.  相似文献   
992.
Rhomboid proteases have many important biological functions. Unlike soluble serine proteases such as chymotrypsin, the active site of rhomboid protease, which contains a Ser-His catalytic dyad, is submerged in the membrane and surrounded by membrane-spanning helices. Previous crystallographic analyses of GlpG, a bacterial rhomboid protease, and its complex with isocoumarin have provided insights into the mechanism of the membrane protease. Here, we studied the interaction of GlpG with 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate, both mechanism-based inhibitors for the serine protease, and describe the crystal structure of the covalent adduct between GlpG and diisopropyl fluorophosphonate, which mimics the oxyanion-containing tetrahedral intermediate of the hydrolytic reaction. The crystal structure confirms that the oxyanion is stabilized by the main chain amide of Ser-201 and by the side chains of His-150 and Asn-154. The phosphorylation of the catalytic Ser-201 weakens its interaction with His-254, causing the catalytic histidine to rotate away from the serine. The rotation of His-254 is accompanied by further rearrangement of the side chains of Tyr-205 and Trp-236 within the substrate-binding groove. The formation of the tetrahedral adduct is also accompanied by opening of the L5 cap and movement of transmembrane helix S5 toward S6 in a direction different from that predicted by the lateral gating model. Combining the new structural data with those on the isocoumarin complex sheds further light on the plasticity of the active site of rhomboid membrane protease.  相似文献   
993.
Activated protein C (aPC) is a natural anticoagulant with strong cyto-protective and anti-inflammatory properties. aPC inhibits pancreatic inflammation and preserves functional islets after intraportal transplantation in mice. Whether aPC prevents the onset or development of type 1 diabetes (T1D) is unknown. In this study, when human recombinant aPC was delivered intraperitoneally, twice weekly for 10 weeks (from week 6 to 15) to non-obese diabetic (NOD) mice, a model for T1D, the incidence of diabetes was reduced from 70% (saline control) to 7.6% by 26 weeks of age. Islets of aPC-treated mice exhibited markedly increased expression of insulin, aPC/protein C, endothelial protein C receptor, and matrix metalloproteinase (MMP)-2 when examined by immunostaining. The insulitis score in aPC-treated mice was 50% less than that in control mice. T regulatory cells (Tregs) in the spleen, pancreatic islets, and pancreatic lymph nodes were increased 37, 53, and 59%, respectively, in NOD mice following aPC treatment. These Tregs had potent suppressor function and, after adoptive transfer, delayed diabetes onset in NOD.severe combined immunodeficiency mice. The culture of NOD mouse spleen cells with aPC reduced the secretion of inflammatory cytokines interleukin (IL)-1β and interferon-γ but increased IL-2 and transforming growth factor-β1, two cytokines required for Treg differentiation. In summary, our results indicate that aPC prevents T1D in the NOD mouse. The aPC mechanism of action is complex, involving induction of Treg differentiation, inhibition of inflammation, and possibly direct cyto-protective effects on β cells.  相似文献   
994.
Newly assembled dengue viruses (DENV) undergo maturation to become infectious particles. The maturation process involves major rearrangement of virus surface premembrane (prM) and envelope (E) proteins. The prM-E complexes on immature viruses are first assembled as trimeric spikes in the neutral pH environment of the endoplasmic reticulum. When the virus is transported to the low pH environment of the exosomes, these spikes rearrange into dimeric structures, which lie parallel to the virus lipid envelope. The proteins involved in driving this process are unknown. Previous cryoelectron microscopy studies of the mature DENV showed that the prM-stem region (residues 111–131) is membrane-associated and may interact with the E proteins. Here we investigated the prM-stem region in modulating the virus maturation process. The binding of the prM-stem region to the E protein was shown to increase significantly at low pH compared with neutral pH in ELISAs and surface plasmon resonance studies. In addition, the affinity of the prM-stem region for the liposome, as measured by fluorescence correlation spectroscopy, was also increased when pH is lowered. These results suggest that the prM-stem region forms a tight association with the virus membrane and attracts the associated E protein in the low pH environment of exosomes. This will lead to the surface protein rearrangement observed during maturation.  相似文献   
995.
996.
Yang X  Du M  Lee DJ  Wan C  Zheng L  Wan F 《Bioresource technology》2012,103(1):494-497
Organic matters in sewage sludge can be converted into volatile fatty acids (VFAs) as renewable carbon sources. This work for the first time applied anthraquinone-2,6-disulfonate (AQDS) for enhancing VFA production from sewage sludge. With 0.066 or 0.33 g AQDS g−1 dried solids (DS), the yields for VFAs peak at 403 or 563 mg l−1, 1.9- or 2.7-fold to the control. The accumulated VFAs were principally composed of acetate and propionate. The AQDS enhances degradation rates of model proteins (bovine serum albumin), but had little enhancement on that of model polysaccharides (dextrans). The acidification step is proposed the rate-limiting step for VFA production from sewage sludge, in which the AQDS molecules shuttle electrons to accelerate the redox reactions associated with amino acid degradation. Methanogenic activities are inhibited in the presence of AQDS. The AQDS-assisted VFAs are renewable organic carbon sources, although their direct use for anaerobic digestion is not advised.  相似文献   
997.
4-(1,3-Benzothiazol-2-yl)thiophene-2-sulfonamide (4a) was found to be a moderately potent inhibitor of cyclin-dependent kinase 5 (cdk5) from a HTS screen. The synthesis and SAR around this hit is described. The X-ray coordinates of ligand 4a with cdk5 are also reported, showing an unusual binding mode to the hinge region via a water molecule.  相似文献   
998.
999.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is an important foliar disease of wheat worldwide. The dominant powdery mildew resistance gene PmAS846 was transferred to the hexaploid wheat lines N9134 and N9738 from wild emmer wheat (Triticum dicoccoides) in 1995, and it is still one of the most effective resistance genes in China. A high resolution genetic map for PmAS846 locus was constructed using two F2 populations and corresponding F2:3 families developed from the crosses of N9134/Shaanyou 225 and N9738/Huixianhong. Synteny between wheat and Brachypodium distachyon and rice was used to develop closely linked molecular markers to reduce the genetic interval around PmAS846. Twenty-six expressed sequence tag-derived markers were mapped to the PmAS846 locus. Five markers co-segregated with PmAS846 in the F2 population of N9134/Shaanyou 225. PmAS846 was physically located to wheat chromosome 5BL bin 0.75–0.76 within a gene-rich region. The markers order is conserved between wheat and Brachypodium distachyon, but rearrangements are present in rice. Two markers, BJ261635 and CJ840011 flanked PmAS846 and narrowed PmAS846 to a region that is collinear with 197 and 112 kb genomic regions on Brachypodium chromosome 4 and rice chromosome 9, respectively. The genes located on the corresponding homologous regions in Brachypodium, rice and barley could be considered for further marker saturation and identification of potential candidate genes for PmAS846. The markers co-segregating with PmAS846 provide a potential target site for positional cloning of PmAS846, and can be used for marker-assisted selection of this gene.  相似文献   
1000.
Mapes J  Chen YZ  Kim A  Mitani S  Kang BH  Xue D 《Current biology : CB》2012,22(14):1267-1275
Highlights? PS is expressed on the surface of apoptotic and phagocytic cells during apoptosis ? CED-7 and TTR-52 mediate time-dependent loss of PS from surface of apoptotic cells ? CED-7 and TTR-52 promote generation of extracellular PS vesicles ? CED-7/TTR-52/CED-1 promote phagocyte PS expression, important for corpse engulfment  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号